3.1.25 \(\int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx\) [25]

3.1.25.1 Optimal result
3.1.25.2 Mathematica [A] (verified)
3.1.25.3 Rubi [A] (verified)
3.1.25.4 Maple [F]
3.1.25.5 Fricas [A] (verification not implemented)
3.1.25.6 Sympy [F]
3.1.25.7 Maxima [F]
3.1.25.8 Giac [F(-1)]
3.1.25.9 Mupad [F(-1)]

3.1.25.1 Optimal result

Integrand size = 33, antiderivative size = 203 \[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\frac {\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}-\frac {\sqrt {a-b+c} \text {arctanh}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}-\frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e} \]

output
1/2*arctanh(1/2*(2*a+b*cot(e*x+d)^2)/a^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d 
)^4)^(1/2))*a^(1/2)/e-1/2*arctanh(1/2*(b+2*c*cot(e*x+d)^2)/c^(1/2)/(a+b*co 
t(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))*c^(1/2)/e-1/2*arctanh(1/2*(2*a-b+(b-2*c) 
*cot(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))*(a-b 
+c)^(1/2)/e
 
3.1.25.2 Mathematica [A] (verified)

Time = 0.77 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.25 \[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\frac {\left (\sqrt {a} \text {arctanh}\left (\frac {b+2 a \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )-\sqrt {a-b+c} \text {arctanh}\left (\frac {b-2 c+(2 a-b) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )-\sqrt {c} \text {arctanh}\left (\frac {2 c+b \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 e \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}} \]

input
Integrate[Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]*Tan[d + e*x],x]
 
output
((Sqrt[a]*ArcTanh[(b + 2*a*Tan[d + e*x]^2)/(2*Sqrt[a]*Sqrt[c + b*Tan[d + e 
*x]^2 + a*Tan[d + e*x]^4])] - Sqrt[a - b + c]*ArcTanh[(b - 2*c + (2*a - b) 
*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + 
e*x]^4])] - Sqrt[c]*ArcTanh[(2*c + b*Tan[d + e*x]^2)/(2*Sqrt[c]*Sqrt[c + b 
*Tan[d + e*x]^2 + a*Tan[d + e*x]^4])])*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d 
 + e*x]^4]*Tan[d + e*x]^2)/(2*e*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x] 
^4])
 
3.1.25.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4184, 1578, 1270, 1154, 219, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan (d+e x) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \cot (d+e x)^2+c \cot (d+e x)^4}}{\cot (d+e x)}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a} \tan (d+e x)}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle -\frac {\int \frac {\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a} \tan (d+e x)}{\cot ^2(d+e x)+1}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1270

\(\displaystyle -\frac {a \int \frac {\tan (d+e x)}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\int \frac {-c \cot ^2(d+e x)+a-b}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {-2 a \int \frac {1}{4 a-\cot ^4(d+e x)}d\frac {b \cot ^2(d+e x)+2 a}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}-\int \frac {-c \cot ^2(d+e x)+a-b}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {-\int \frac {-c \cot ^2(d+e x)+a-b}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1269

\(\displaystyle -\frac {c \int \frac {1}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-(a-b+c) \int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {2 c \int \frac {1}{4 c-\cot ^4(d+e x)}d\frac {2 c \cot ^2(d+e x)+b}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}-(a-b+c) \int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {-(a-b+c) \int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {2 (a-b+c) \int \frac {1}{4 (a-b+c)-\cot ^4(d+e x)}d\frac {(b-2 c) \cot ^2(d+e x)+2 a-b}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )+\sqrt {a-b+c} \text {arctanh}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e}\)

input
Int[Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]*Tan[d + e*x],x]
 
output
-1/2*(-(Sqrt[a]*ArcTanh[(2*a + b*Cot[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Cot 
[d + e*x]^2 + c*Cot[d + e*x]^4])]) + Sqrt[a - b + c]*ArcTanh[(2*a - b + (b 
 - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot[d + e*x]^2 + c*C 
ot[d + e*x]^4])] + Sqrt[c]*ArcTanh[(b + 2*c*Cot[d + e*x]^2)/(2*Sqrt[c]*Sqr 
t[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])])/e
 

3.1.25.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1270
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + 
 (g_.)*(x_))), x_Symbol] :> Simp[(c*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)) 
Int[(a + b*x + c*x^2)^(p - 1)/(d + e*x), x], x] - Simp[1/(e*(e*f - d*g)) 
Int[Simp[c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x, x]*((a + b*x + c*x^2)^(p 
- 1)/(f + g*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[p] 
&& GtQ[p, 0]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.25.4 Maple [F]

\[\int \sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}\, \tan \left (e x +d \right )d x\]

input
int((a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d),x)
 
output
int((a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d),x)
 
3.1.25.5 Fricas [A] (verification not implemented)

Time = 0.70 (sec) , antiderivative size = 2522, normalized size of antiderivative = 12.42 \[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\text {Too large to display} \]

input
integrate((a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d),x, algorithm= 
"fricas")
 
output
[1/4*(sqrt(a)*log(8*a^2*tan(e*x + d)^4 + 8*a*b*tan(e*x + d)^2 + b^2 + 4*a* 
c + 4*(2*a*tan(e*x + d)^4 + b*tan(e*x + d)^2)*sqrt(a)*sqrt((a*tan(e*x + d) 
^4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4)) + sqrt(a - b + c)*log(((8*a^2 
- 8*a*b + b^2 + 4*a*c)*tan(e*x + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*ta 
n(e*x + d)^2 + b^2 + 4*(a - 2*b)*c + 8*c^2 - 4*((2*a - b)*tan(e*x + d)^4 + 
 (b - 2*c)*tan(e*x + d)^2)*sqrt(a - b + c)*sqrt((a*tan(e*x + d)^4 + b*tan( 
e*x + d)^2 + c)/tan(e*x + d)^4))/(tan(e*x + d)^4 + 2*tan(e*x + d)^2 + 1)) 
+ sqrt(c)*log(((b^2 + 4*a*c)*tan(e*x + d)^4 + 8*b*c*tan(e*x + d)^2 + 8*c^2 
 - 4*(b*tan(e*x + d)^4 + 2*c*tan(e*x + d)^2)*sqrt(c)*sqrt((a*tan(e*x + d)^ 
4 + b*tan(e*x + d)^2 + c)/tan(e*x + d)^4))/tan(e*x + d)^4))/e, 1/4*(2*sqrt 
(-c)*arctan(2*sqrt(-c)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan( 
e*x + d)^4)*tan(e*x + d)^2/(b*tan(e*x + d)^2 + 2*c)) + sqrt(a)*log(8*a^2*t 
an(e*x + d)^4 + 8*a*b*tan(e*x + d)^2 + b^2 + 4*a*c + 4*(2*a*tan(e*x + d)^4 
 + b*tan(e*x + d)^2)*sqrt(a)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c 
)/tan(e*x + d)^4)) + sqrt(a - b + c)*log(((8*a^2 - 8*a*b + b^2 + 4*a*c)*ta 
n(e*x + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + b^2 + 4*(a 
 - 2*b)*c + 8*c^2 - 4*((2*a - b)*tan(e*x + d)^4 + (b - 2*c)*tan(e*x + d)^2 
)*sqrt(a - b + c)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + 
 d)^4))/(tan(e*x + d)^4 + 2*tan(e*x + d)^2 + 1)))/e, -1/4*(2*sqrt(-a)*arct 
an(2*sqrt(-a)*sqrt((a*tan(e*x + d)^4 + b*tan(e*x + d)^2 + c)/tan(e*x + ...
 
3.1.25.6 Sympy [F]

\[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\int \sqrt {a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}} \tan {\left (d + e x \right )}\, dx \]

input
integrate((a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(1/2)*tan(e*x+d),x)
 
output
Integral(sqrt(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4)*tan(d + e*x), x)
 
3.1.25.7 Maxima [F]

\[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\int { \sqrt {c \cot \left (e x + d\right )^{4} + b \cot \left (e x + d\right )^{2} + a} \tan \left (e x + d\right ) \,d x } \]

input
integrate((a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d),x, algorithm= 
"maxima")
 
output
integrate(sqrt(c*cot(e*x + d)^4 + b*cot(e*x + d)^2 + a)*tan(e*x + d), x)
 
3.1.25.8 Giac [F(-1)]

Timed out. \[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\text {Timed out} \]

input
integrate((a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*tan(e*x+d),x, algorithm= 
"giac")
 
output
Timed out
 
3.1.25.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan (d+e x) \, dx=\int \mathrm {tan}\left (d+e\,x\right )\,\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^4+b\,{\mathrm {cot}\left (d+e\,x\right )}^2+a} \,d x \]

input
int(tan(d + e*x)*(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2),x)
 
output
int(tan(d + e*x)*(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2), x)